热门搜索:

慈溪市东亿通信设备厂主要生产:144芯光缆交接箱、288芯光缆交接箱、576芯光缆交接箱、光缆接头盒、光纤分纤箱;凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国.竭诚与国内外商家双赢合作,共同发展,共创辉煌!

    三网融合配线柜制作方法

    更新时间:2020-11-28   浏览数:27
    所属行业:通信 通信测试设备 网络测试设备
    发货地址:浙江省宁波慈溪市  
    产品规格:齐全
    产品数量:99999.00台
    包装说明:中性
    单 价:950.00 元/台
    型号DY456 加工定制 重量2 类型光纤熔接 是否跨境货源 东亿

    三网融合配线柜第三阶段(1986~1996),这是进一步提高传输速率、增加传输距离并一体深入开展新技术研究的时期。在这个时期,实现了1.55m色散移位单模光纤通信系统。采用外调制技术,传输速率可达2.5~10Gb/s,中继传输距离可达100~150km。实验室可以达到更高水平。第四阶段(1996年至今)实现了超大容量的波分(WDM,WavelengthDivisionMultiplexing)光纤通信系统及基于WDM和波长选路的光网络;正在研究超长距离的光孤子(Soliton)通信系统(将在第7章作介绍)1976,美国在亚特兰大进行的现场试验,标志着光纤通信从基础研究发展到了商业应用的新阶段。此后,光纤通信技术不断创新:光纤从多模发展到单模,工作波长从0.85pm发展到1.31pm1.55m,传输速率从几十Mb/s发展到几十Gb/s

    三网融合配线柜细节图片

    三网融合配线柜产品介绍

    由于雨、雾、雪和大气灰尘的吸收和散射,光波能量衰减很大。例如,暴雨能造成3~12dB/km的衰减,浓雾衰减高达60~200dB/km。另一方面,大气的密度和温度不均匀,造成折射率的变化,使光束位置发生偏移。因而通信的距离和稳定性都受到较大的限制,不能实现“全天”通信。虽然,固体激光器的发明大大提高了发射光功率,延长了传输距离,使大气激光通信可以在江河两岸、海岛之间和某些特定场合使用,但是大气激光通信的稳定性和可靠性仍然没有解决。为了克服气候对激光通信的影响,人们自然想到把激光束限制在特定的莖间丙传因而提出了透镜波导和反射镜波导的光波传输系统,透镜波导是在金属管内每隔一定距离安装一个透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。

    三网融合配线柜特点

    反射镜波导和透镜波导相似,是用与光束传输方向成45°角的两个平行反射镜代替透镜而构成的、这两种波导,从理论上讲是可行的,但在实际应用中遇到了不可克服的困难。首先,现场施工中校准和安装十分复杂;其次,为了防止地面活动对波导的影响,必须把波导深埋或选择在人由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低谷车非常少的地区使用。介质新概念的,指出了利用光纤(OpticalFiber)进行信息传输的可能性和技术途径,莫定了现代光通信一光纤通信的基础。当时石英纤维的损耗高达1000dB/km以上,高银等人指出:这样大的损耗不是石英纤维本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、Cu等)离子的吸收产生的。

    三网融合配线柜结构

    材料本身固有的损耗基本上由瑞利(Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小。因此有可能通过原材料的提纯制造出适合于长距离通信使用的低损耗光纤。如果把材料中金属离子含量的比重降低到10以下,就可以使光纤损耗减小到10dB/km。再通过改进制造工艺的热处理提高材料的均匀性,可以进一步把损耗减小到几dB/km。这个思想和预测受到世界各国较大的重视。1970年,光纤研制取得了重大打破。在当年,美国康宁(Corning)公司就研制成功损耗20dB/km的石英光纤。它的意义在于:使光纤通信可以和同轴电缆通信竞争,从而展现了光纤通信美好的前景,促进了世界各国相继投入大量人力物力,把光纤通信的研究开发推向一个新阶段。

    1972年,康宁公司高纯石英多模光纤损耗降低到4dB/km。1973年,美国贝尔(Be)实验室取得了更大成绩,光纤损耗降低到2.5dB/km。1974年降低到1.1dB/km。1976年,日本电报电话(NTT)公司等单位将光纤损耗降低到0.47dB/km(波长1.2pm)。在以后的10年中,波长为1.55gm的光纤损耗:1979年是0.20dB/km,1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤低损耗的理论较限。1970年,作为光纤通信用的光源也取得了实质性的进展。当年,美国贝尔实验室、日本电气公司(NEC)和当时的苏联先后打破了半导体激光器在低温(-200℃)或脉冲激励条件下工作的限制,研制成功室温下连续振荡的镓铝(GaAlAs)双异质结半导体激光器(短波长)。

    虽然寿命只有几个小时,但其意义是重大的,它为半导体激光器的发展奠定了基础。1973年,半导体激光器寿命达到7000小时。1977年,贝尔实验室研制的半导体激光器寿命达到10万小时(约114年),外推寿命达到100万小时,完全满足实用化的要求。在这个期间,1976年日本电报电话公司研制成功发射波长为1.3pm的铟镓磷(InGaAsP)激光器,1979年美国电报电话(AT8T)公司和日本电报电话公司研制成功发射波长为1.55m的连续振荡半导体激光器。由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要年份。1976年,美国在亚特兰大(Atlanta)进行了世界上较好个实用光纤通信系统的现场试验,系统采用GaAlAs激光器作光源,多模光纤作传输介质,速率为44.7Mb/s,传输距约10km。

    1980年,美国标准化FT-3光纤通信系统投入商业应用,系统采用渐变型多模光纤,速率为44.7Mb/s。随后美国很快敷设了东西干线和南北干线,穿越22个州,光缆总长达5×10km。1976年和1978年,日本先后进行了速率为34Mb/s,传输距离为64km的突变型多模光纤通信系统,以及速率为100Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线,全长3400km,初期传输速率为400Mb/s,后来扩容到1.6Gb/s。随后,由美、日、英、法发起的较好条横跨大西洋TAT-8海底光缆通信系统于1988年建成,全长6400km;较好条横跨太平洋TPC-3/HAW-4海底光缆通信系统于1989年建成,全长13200km。

    另一方面,随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大:从初期的本地电话网的局间中继线到长途干线进一步延伸到用户接入网,从数字电话到有线电视(CATv),从单一类型信息的传输到多种业务的传输。目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来国家信息基础设施的支柱。在许多发达国家,生产光纤通信产品的行业已在国民经济中占重要地位。根据资料,仅光缆产品一项(约占整个光纤通信产品的一半),1995年在世界市场销售额达80亿美元2000年达180亿美元,5年中复合年增长率(CAGR)17.6%。世界成缆光纤市场销售量,1994年为1810×104km,2001年为6570×104km,7年中CAGR20%



    http://www.szjjjcjs.com